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Abstract

Recently, the addition of nanoparticles (NPs) has been proposed as a new strategy
to enhance the effect of radiotherapy particularly in the treatment of aggressive
tumors such as glioblastoma. The physical processes involved in radiosensitisation
by nanoparticles have been well studied although further understanding of its
biological impact is still lacking, and this includes the localisation of these NPs in the
target cells. Most studies were performed with NPs tagged with fluorescent markers.
However, the presence of these markers can influence the NPs uptake and
localisation. In this study, a set of methods was used to unambiguously and fully
characterise the uptake of label-free NPs, their co-localisation with cell organelles, and
their radiosensitising efficacy. This set was applied to the case of gadolinium-based
nanoparticles (GdBN) used to amplify the radiation killing of U87 glioblastoma cells
extracted from highly aggressive human tumor. For the first time, Synchrotron
Radiation Deep UV (SR-DUV) microscopy is proposed as a new tool to track label-free
GdBN. It confirmed the localisation of the NPs in the cytoplasm of U87 cells and the
absence of NPs in the nucleus. In a second step, Transmission Electron Microscopy
(TEM) demonstrated that GdBN penetrate cells by endocytosis. Third, using confocal
microscopy it was found that GdBN co-localise with lysosomes but not with
mitochondria. Finally, clonogenic assay measurements proved that the presence of
NPs in the lysosomes induces a neat amplification of the killing of glioblastoma cells
irradiated by gamma rays. The set of combined experimental protocols—TEM,
SR-DUV and confocal microscopy—demonstrates a new standard method to study
the localisation of label-free NPs together with their radiosensitising properties. This
will further the understanding of NP-induced radiosentisation and contribute to the
development of nanoagents for radiotherapy.

Keywords: Radiosensitisation; Nanomedicine; Tumor targeting; Theranostic;
Gadolinium- based nanoparticles; Localisation; Deep-UV synchrotron microscopy;
Glioblastoma
2014 Stefancikova et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
ttribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
edium, provided the original work is properly credited.

mailto:sandrine.lacombe@u-psud.fr
http://creativecommons.org/licenses/by/4.0


Štefančíková et al. Cancer Nanotechnology 2014, 5:6 Page 2 of 15
http://www.cancer-nano.com/content/5/1/6
Background
Glioblastoma multiforme (GBM) is a highly aggressive tumor with median survival

time of patients of 12 months [1]. Hence, the treatment of this type of cancer remains

a challenge. Recently, high-Z atoms containing nanoparticles (NPs) have been proposed

as potential nanodrugs to improve the effects of radiation-based therapies [2-5]. Among

metal-based NPs, gold NPs were widely used for diagnostic as contrast agents and in

therapy [6-10]. Gold NPs were found to enhance the effects of mid- and high-energy

X-rays [2,4-6,11]. In parallel, it was shown that NPs composed of other metals such as

platinum are able to enhance lethal damage to biomolecules when gamma rays or fast

medical ions (He2+ and C6+) are used as ionising radiations [12].

Gadolinium-based nanoparticles (GdBN) act as multimodal agents; it offers a strong

advantage to improve not only the therapeutic index of the treatment but also the diag-

nosis of tumor by MRI (theranostic) [13-16]. Importantly, in vivo experiments demon-

strated that these NPs are rapidly eliminated by the kidneys and show no evidence of

toxicity (no perturbation of the complement system, no impairment of the renal func-

tion) [17-20]. It was found that GdBN amplify significantly radiation-induced killing of

U87 glioblastoma cells when combined with high-energy X-rays and gamma rays

[21,22], or with fast ions [23].

The amplification effects induced by high-Z NPs are explained in terms of early stage

processes that take place in the cells. Briefly, when activated by the incident radiation,

NPs are responsible for the emission of electron bursts and the production of radical

clusters (reactive oxygen species). Consecutively highly lethal nano-sized damages are

induced in cell constituents as due to the interaction of the highly reactive clusters with

biomolecules [24,25].

So far it was shown that platinum compounds (NPs or salts), gold nanoparticles and

GdBN amplify cell killing even though they do not enter cell nuclei [23,26-30]. Experi-

ments focused on the NPs localisation were conducted using Transmission Electron

Microscopy (TEM) and/or confocal microscopy as standard methods. TEM allows high

resolution (10 nm) observation of cell organelles such as liposomes and mitochondria.

The limitation of this technique, however, stems from the difficult sample preparation,

which may change the morphology of the cells [31]. In confocal microscopy, the experi-

ments are performed with living cells, thus measurements of the uptake dynamic and

co-localisation with cell organelles (lysosomes, mitochondria) can be performed. The

limitation of confocal microscopy stems from the necessity to tag the NPs with fluores-

cent dyes such as rhodamine, cyanine, or BoDIPYs [32]. These markers may influence

the internalisation and the localisation of the NPs in the cells. Moreover, if the dyes

separate from the NPs, the fluorescent images may lead to false interpretation [33-35].

The main goal of the present work is to determine the localisation and related radio-

sensitising properties of label-free GdBN in human glioblastoma cells (U87) in different

conditions of incubation. The localisation of label-free NPs was performed with a novel

microscopy tool, the Synchrotron-Radiation Deep UV (SR-DUV) microscopy. The exci-

tation window of the synchrotron source goes down to 190 nm. The instrument is thus

able to excite and detect the natural fluorescence of nanoparticles that absorb in the

Deep-UV spectral range (below 350 nm). This microscope has been used to follow the

intake of antibiotics in bacteria [36]. Here, we show for the first time that the technique

can be applied in the observation of label-free NP uptake in cells. As a complementary
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tool, TEM was used to characterise the uptake mechanism of GdBN in U87 cells. Add-

itional measurements using confocal microscopy were used to follow the dynamics of

NPs in living cells and also to co-localise the GdBN with lysosomes and mitochondria,

two important organelles in cell metabolism. The effect of GdBN on the radiation in-

duced cell killing of U87 glioblastoma cells irradiated by gamma rays 1.25 MeV was

evaluated using clonogenic assay [22].
Methods
Gadolinium-based nanoparticles (GdBN) were synthesised by the group of O. Tillement

(LPCML, Lyon, France) [13]. Briefly, the GdBN consist of a polysiloxane core surrounded

by gadolinium chelates covalently grafted on the inorganic matrix. The synthesis proced-

ure and the characteristics of these nanoparticles are detailed elsewhere [22,37]. Their size

is 3 ± 1 nm in diameter and their mass is about 8.5 ± 1.0 kDa [22,37]. After freeze-drying,

the GdBN can be stored at 4°C for months. For SR-DUV microscopy and TEM measure-

ments, label-free GdBN were used. For the experiments of confocal microscopy, the

organic fluorophore cyanine 5.5 was covalently grafted onto GdBN [15,22,38]. The con-

centration of GdBN in the medium is expressed in the concentration of Gd, i. e., 1 mM of

Gd is approximately equal to 0.1 mM of nanoparticles. In this study we used Gd concen-

trations ranging from 0.5 to 2 mM, which are not toxic for U87 cells [30].
Cell culture

Human glioblastoma U87 cells were cultivated in Dulbecco’s Modified Eagle Medium

(DMEM) (Life Technologies) supplemented with 10% heat-inactivated foetal bovine

serum (PAA), 100 U/ml penicillin (PAA), 100 μg/ml streptomycin (PAA) and 1% Non

Essential Amino Acids (Life Technologies).
SR-DUV fluorescence microscopy

Cells were plated on quartz slides (ESCO OPTICS Inc) and maintained in 5% CO2 in-

cubator at 37°C. Medium containing GdBN at 0.5 mM or 2 mM concentration was

added to the cells during 5 min or 1 hour. After the incubation, cells were rinsed twice

with PBS 1X (5 min at room temperature), fixed with 4% paraformaldehyde in PBS 1X

(20 min at room temperature), rinsed with distilled water, dried and stored at 4°C. The

SR-DUV experiments were performed at the DISCO beamline of Synchrotron SOLEIL

(Saint-Aubin, France).

The fluorescence images were recorded at λexc = 340 nm. The acquisition time of one

image was 30 s. Images of minimum three cells were recorded for each condition in-

cluding the control. Sixty images with a vertical z-stack of 0.25 μm were acquired to

obtain a 3D record of the GdBN localisation in the cells. The Tikhonov-Miller de-

convolution was applied to correct the distortion of the images. The images were finally

analysed with ImageJ software (Rasband, W.S., ImageJ, U. S. National Institutes of Health,

Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2011). The total fluorescence

intensity of each cell was determined using ImageJ (integrated density, ID). The back-

ground was obtained by measuring the fluorescence intensity of regions out of the cells.

The corrected total cell fluorescence (CTCF) was then determined by subtracting the

background from the integrated density (CTCF = ID – background).

http://imagej.nih.gov/ij/
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Transmission electron microscopy (TEM)

It was performed on the microscopy platform IBiSA at the Institut Curie, Orsay,

France. U87 cells were plated on microscopic glass slides. The samples were incubated

with 1 mM GdBN during 1 hour. The slides were then rinsed with PBS 1X and fixed

with a mixture of 2.5% glutaraldehyde and 4% paraformaldehyde diluted in PBS 1X.

After rinsing with PBS 1X, the cells were dehydrated using ethanol in gradient concen-

trations and embedded step by step in Epon resin. After resin polymerisation, the sam-

ples were cut using an ultramicrotome in 100 nm-thick slices. The ultrathin sections

were deposited on carbon-formvar copper grids (Agar scientific) and observed under

Z-loos mode (10 eV window) in a JEOL 2200FS electron microscope operated at

200 kV. Measurements were performed for close to 20 U87 cells of 4 different slices.

Additional Electron Energy Loss Spectroscopy (EELS) measurements were performed

using an omega-filter.

Confocal microscopy studies

The experiments were performed with a LEICA SP5 confocal system located at the

Centre de Photonique Bio-Medical (CPBM), University Paris Sud, Orsay, France. The

samples were thermostatically controlled and regulated in CO2. U87 cells were grown

in 8-well LabTek chambers (Nalge Nunc International). For simple localisation studies,

the cells were incubated with 0.6 or 1 mM of GdBN functionalised with cyanine 5.5

used as a fluorescent marker (GdBN-Cy5.5) during different incubation times (1 hour,

6 hours and 12 hours). After incubation the cells were rinsed three times with PBS 1X

and Hank’s Balanced Salt Solution (HBSS) was added. Cyanine 5.5 was excited at

633 nm and the fluorescence emission was detected in the 650-750 nm range. The lo-

calisation was studied in more than 100 cells.

For co-localisation studies, U87 cells were incubated with Lysotracker-green (Invitrogen)

(75 nM) or Mitotracker-green (Invitrogen) (200 nM) dissolved in HBSS and mixed with

DMEM for 45 minutes. The trackers were washed out with PBS 1X before incubation dur-

ing 1 hour with 1 mM of GdBN-Cy5.5. After incubation the cells were rinsed three times

with PBS 1X and Hank’s Balanced Salt Solution (HBSS) was added. Cyanine 5.5 was excited

at 633 nm and the fluorescence emission was detected in the 650-750 nm range. The

lysotracker and mitotracker were excited at 488 nm and the fluorescence emission was

detected in the 505-600 nm range. Images were recorded at three different depths (z axis-

positions). The co-localisation of GdBN with lysosomes and mitochondria was evaluated

using the ImageJ software and the JACoP statistical plug-in (Just Another Co-localisation

Plugin) (http://rsb.info.nih.gov/ij/plugins/track/jacop.html). The co-localisation coeffi-

cients were calculated for more than 30 cells.

Gamma radiation experiments

1.5 ×105 exponentially growing U87 cells were plated in Petri dishes (Falcon 3002)

12 hours before irradiation. Cells were maintained in a 5% CO2 incubator at 37°C.

GdBN were added to the cell medium 6 hours before irradiation at a gadolinium con-

centration of 0.5 mM. At this concentration, the nanoparticles are not toxic [19,20].

The U87 cells were irradiated at room temperature under atmospheric conditions. The

irradiations were performed with a cobalt source (60Co) at CEA (Fontenay aux Roses,

France) at a mean energy of 1.25 MeV, a linear energy transfer (LET) of 0.2 keV/μm

http://rsb.info.nih.gov/ij/plugins/track/jacop.html
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and a dose rate of 1 Gy/min. The combined effect of radiation and nanoparticles on

cells was quantified by clonogenic assay. After irradiation, the cells were fixed by tryp-

sin and plated into 100 mm Petri dishes (Falcon 3002) at a density of 100 surviving

cells per dish. The plating efficiency was found close to 20%. After 14 days, the colonies

were treated with 50% methanol and stained by 0.5% methylene blue. The colonies

were counted to determine the survival fractions.

Results and discussion
Localisation of label-free GdBN in U87 cells with SR-DUV microscopy

In a first step, the spectroscopic properties of GdBN (1 mM) were determined by per-

forming the fluorescence excitation spectroscopy and the fluorescence emission spec-

troscopy of NPs diluted in ultra-pure water (Figure 1). GdBN exhibited the maximum

fluorescence emission at λem = 440 nm and the maximum excitation at λexc = 360 nm.

In cells, an autofluorescence is generated by natural fluorophores, mainly NADH,

tyrosine, and tryptophan [39]. To obtain the best signal of the NPs over the autofluo-

rescence, the excitation wavelength λexc = 340 nm was chosen for all the microscopy

experiments.

In a second step, the fluorescence microscopy of GdBN in U87 cells was recorded.

The experiments were performed with cells incubated with GdBN at two concentra-

tions (0.5 and 2 mM) during 5 minutes or 1 hour. The result obtained for the GdBN

concentration of 2 mM and the incubation time of 5 min is presented in Figure 2. Light

transmission micrograph was used to display the shape of the cells (Figure 2A). The

nucleus of the cell was clearly distinguished as pointed in the figure. This image shows

that the cell did not suffer from the sample preparation. Figure 2B corresponds to

the SR-DUV fluorescence image. It shows that GdBN were present. The merge of

Figures 2A and B (Figure 2C) is used to show the localisation of GdBN in cells.

We clearly observe that GdBN free of fluorescent dye enter the cells and remain lo-

cated in the cytoplasm exclusively.
Figure 1 Fluorescence spectra of label free GdBN. Fluorescence excitation spectrum (λem = 440 nm) (- -)
and fluorescence emission spectrum (λexc = 360 nm) (-) of 1 mM GdBN.



Figure 2 Localisation of GdBNs in U87 cells visualised by SR-DUV microscopy. (A) Light transmission
image of U87 cell, (B) fluorescence image of label free GdBN (red), (C) merge of transmission and
fluorescence images (GdBN in red).
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In order to investigate the influence of the GdBN concentration and incubation time

on NPs uptake, we calculated the corrected total cell fluorescence (CTCF) values for

cells free of GdBN (controls) and cells loaded with two concentrations (0.5 and 2 mM)

for the two incubation times (5 min and 1 hour). The CTCF values are summarised in

Table 1.

The present analysis shows that there was a high variability of fluorescence intensity

between the different cells. This indicates that the uptake was not homogeneous in

every cell. Interestingly, GdBN are already efficiently internalised in the cells after 5

minutes. However the concentration of GdBN in the medium (0.5 mM and 2 mM) did

not impact the quantity of GdBN in the cells. This last result seems different from the

measurements of Rima and coworkers who observed a linear increase of the Gd con-

centration in U87 and SQ20B cells whilst increasing the GdBN concentration in the

cultivation medium [30]. However their study was performed using the Inductively

Coupled Plasma (ICP) technique, which consists of the quantification of internalised

Gd averaged over millions of cells. Contrary to this macroscopic technique, SR-DUV

microscopy gives rise to the internalisation of GdBN in each cell. This allows the ob-

servation of differences between cells as observed in the present study. This type of

cell-to-cell heterogeneity was recently observed in the case of magnetic NPs [40]. The

heterogeneity in the capacity of cells to internalise NPs could influence their efficacy of

amplifying radiation effects. It is thus a great challenge to study and quantify the het-

erogeneity in the uptake of label free-NPs which has never been done so far. This possi-

bility offered by SR-DUV microscopy is still in the process of development.
Table 1 CTCF values measured in U87 cells with and without NPs

GdBN concentration [mM] GdBN
incubation time

Mean CTCF CTCF
cell 1

CTCF
cell 2

CTCF
cell 3

CTCF
cell 4

2 5 minutes 3.88 107 7.58 107 1.65 107 4.15 107 2.12 107

2 1 hour 2.84 107 2.68 107 1.33 107 2.19 107 5.16 107

0.5 1 hour 2.86 107 4.77 107 1.13 107 2.68 107

0 (control) 1.70 107 1.36 107 2.14 107 1.60 107
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Uptake mechanism of label-free GdBN in U87 cells investigated by TEM

TEM measurements have been performed to observe the internalisation of NPs with a

better resolution (10 nm) and determine the mechanism(s) of NPs uptake.

Images have been recorded for more than 20 samples (see Experimental section). An

example of TEM image is presented in Figure 3. For all the samples we observe elec-

tron dense regions close to the cell membrane (Figure 3A and 3B) and in the cytoplasm

(Figure 3C and 3D). The magnification image (Figure 3B) shows that these regions are

composed of small electron dense objects. These are attributed to nanoparticles clus-

ters. No electron dense regions were found in the cell nucleus (image not shown here).

To confirm the composition of these dense granules, EELS spectra of these regions

have been performed close to the membrane and in the cytoplasm (Figure 3E and 3F).

The peaks M4 and M5 are characteristic of gadolinium. Finally, these TEM and EELS
Figure 3 TEM images of U87 cells after incubation with 1 mM GdBN for 1 hour. (A) Image of a cell
with electron dense regions located close to the membrane. (B) Zoom of the electron dense region shown
in A. (C and D) Images of cells with electron dense regions located in the cytoplasm. (E) EELS spectrum of
a electron dense region evidenced in (A). (F) EELS spectrum of a electron dense region evidenced in (C).
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measurements confirm that GdBN entered U87 cells and located in the cytoplasm but

do not penetrate the cell nuclei.

Interestingly NPs clusters appear in low electron density regions. These regions

are assigned to vesicles. The average diameter of these vesicles is 400 – 600 nm,

which corresponds to endosomes and lysosomes [41]. In the images 3A and 3B we

also observe the presence of membrane invaginations. These observations strongly

suggest that GdBN were internalised by endocytosis. Indeed, this uptake mechanism

is characterised by the induction of membrane invagination followed by trafficking

from early endosomes to late endosomes and lysosomes as observed in the TEM

images.

It is noteworthy to mention that GdBN have a size (3 nm) close to macromolecules

such as proteins. These entities are generally transported to cells by pathways such as

phagocytosis, macropinocytosis, clathrin-dependent endocytosis, caveolin-dependent

endocytosis and clathrin/caveolinin dependent endocytosis [42,43]. These mechanisms

differ by the size of the vesicles, the nature of the transported species and the need of

specific receptors [44]. Rima and co-workers [30] observed that, in the case of SQ20B

cell line, GdBN are internalised via macropinocytosis. This process is characterised by

the formation of membrane lamellipodia (“arms”) which pick up particle aggregates

[30]. In the present study, the presence of membrane invaginations is more indicative

of a pathway such as clathrin-mediated endocytosis. The uptake of GdBN by endo-

cytosis has been proposed by other groups [45,46]. In the case of nanodiamonds inter-

nalised in A549 lung cancer cells, it was shown that different pathways such as

macropinocytosis and clathrin-mediated endocytosis may participate in the NPs

uptake [47]. Similarly, various endocytosis mechanisms were used to describe the

uptake of sub-20 nm titanium dioxide nanoparticles in prostate PC-3 M cancer cells

[48].

Finally, the present study shows that in the case of U87 glioblastoma cells, GdBN

were internalised by endocytosis. It is not clear yet what are the parameters that give

advantage to one or more uptake pathways and how important this step is in the im-

pact of NPs on the radiation effects. Additional studies are needed to answer these

questions.

Influence of fluorescent labelling on NPs uptake and co-localisation with cell organelles

performed by confocal microscopy

The other objective of this work was to co-localise GdBN with lysosomes and mito-

chondria of U87 cells. For this purpose, fluorescent labelling of GdBN was needed

because confocal microscopy is the standard method used to image cell organelles.

We first investigated the influence of cyanine 5.5 on the NPs localisation to prevent

artefacts due to the presence of fluorescent dyes in the co-localisation measure-

ments.

Influence of cyanine 5.5 on the GdBN localisation in U87 cells.

A representative fluorescent image of U87 cells loaded with GdBN tagged with cyanine

5.5 (GdBN-Cy5.5) is presented in Figure 4. This image confirmed that the NPs sit ex-

clusively in the cytoplasm even in the presence of cyanine at the surface. Similar

results were obtained for different conditions of incubation (GdBN concentrations



Figure 4 Merge image of the transmission and fluorescence images obtained by confocal
microscopy of U87 cell loaded with GdBN-Cy5.5 (red) at a concentration of 0.6 mM incubated
for 12 hours.
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and incubation times – see section Methods). Interestingly, NPs did not enter the

nucleus but were located around the nuclei. This is in agreement with results ob-

tained with GdBN localised in Chinese Hamster Ovary (CHO) cells [23] and U87 cells

[22].

The GdBN clusters have a size distribution in the cell cytoplasm ranging from 400 to

900 nm. This distribution was stable regardless of the NPs concentration (0.6 or 1 mM) and

the incubation time (1 hour, 6 hours and 12 hours). When GdBN are conjugated with

fluorescein- isothiocyanate (FITC) the clusters are larger and more irregular [22].

It is worth mentioning that GdBN remained localised in the cells for up to 37 hours

(end of our observation), which indicates that the NPs had a long time of residence in

U87 cells.

More importantly the localisation of GdBN tagged with cyanine 5.5 was similar to

the localisation of label-free NPs as observed in TEM and SR-DUV microscopy.

Thus, we have demonstrated without ambiguity that the addition of cyanine 5.5 did

not influence the localisation of GdBN in U87 cells. In conclusion, confocal micros-

copy together with NPs labelling with cyanine can be used to perform additional

measurements of co-localisation with cell organelles.

The novel methodological approach used here—combining TEM, SR-DUV and

confocal microscopy—is proposed for other studies focused on the NPs localisation

in cells.
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Co-localisation of GdBN with cell organelles

In a second step, we investigated the co-localisation of GdBN with lysosomes and mito-

chondria with confocal microscopy using cyanine as the fluorescent dye of the NPs.

Confocal microscopy images are presented in Figure 5. Figure 5A and 5D correspond

to the fluorescence images of U87 cells loaded with GdBN-Cy5.5. Figure 5B and 5E

correspond to the fluorescence images of U87 cells incubated with Lysotracker-green

or Mitotracker-green respectively. The merged images of GdBN-Cy5.5 with Lysotracker-

green (Figure 5C) and Mitotracker-green (Figure 5F) clearly demonstrate the co-

localisation of GdBN-Cy5.5 with lysosomes but not with mitochondria.

A statistical analysis of the images was performed using ImageJ statistical plugin

JACoP, a tool commonly used for co-localisation analysis. Briefly, this plugin gives ac-

cess to the most important correlation coefficient-based tools (Pearson’s coefficient,

Manders’ coefficient) and allows comparing various methods (Costes’ approach, Van

Steensel’s approach, Li’s approach) to evaluate the co-localisation [49]. The Pearson’s

correlation coefficient was used to quantify the correlation between the GdBN-Cy5.5

fluorescence and the lysosomes or mitochondria fluorescence. This correlation coeffi-

cient estimates the degree of overlap of the red and green spots of each dual-channel

image [50]. This analysis was performed with the images recorded 20 hours after the

incubation with GdBN-Cy5.5. The average Pearson’s correlation coefficients obtained

were 0.63 (SD 0.078) for the GdBN co-localisation with the lysosomes and 0.23 (SD

0.091) for the GdBN co-localisation with the mitochondria. Values in the 0.5 - 1 range

indicate a co-localisation [51]. This analysis demonstrates that GdBN were co-localised

with lysosomes. This was observed for 5 hours up to 37 hours after incubation. No co-

localisation of GdBN with mitochondria was observed even after 37 hours.

Finally, the present experiment displayed lysosomes as being the preferential sites of

GdBN in U87 cells.
Figure 5 Fluorescence images obtained by confocal microscopy of U87 loaded with GdBN-Cy5.5
1 mM (red) (A, D, C and F) in the presence of Lysotracker-green (green) (B and C) or Mitotracker-
green (green) (E and F). (C) Merged image of (A) and (B). (F) Merged image of (D) and (E).



Štefančíková et al. Cancer Nanotechnology 2014, 5:6 Page 11 of 15
http://www.cancer-nano.com/content/5/1/6
It should be noted that lysosomes are very acidic cellular vesicles that play a role in

the transport and the degradation of intracellular and extracellular cargo. A perturb-

ation of these entities (by radiation for instance) can induce lysosomal pathologies such

as phospholipidosis, lysosomal overload, which result in the autophagy of the cells [52].

The presence of NPs of different sizes and composition in endosomes and lysosomes

was shown by other groups [53-56].

Influence of GdBN on gamma radiation effects in U87 cells

The effect of GdBN on cells irradiated by gamma rays (1.25 MeV) was investigated

using the clonogenic assay as the analysis method of the radiation-induced cell killing

(see Methods section). The survival curves of U87 cells free of nanoparticles (controls)

and U87 cells loaded with GdBN (0.5 mM) irradiated by gamma rays are presented in

Figure 6.

The cell survival fractions decreased while the radiation dose increased. This decrease

was clearly amplified in the presence of GdBN.

To characterise the effects of the nanoparticles, the cell surviving fraction (SF) curves

were simulated with a linear quadratic law [57]:

SF Dð Þ ¼ e− aDþβD2ð Þ ð1Þ
0 1 2 3 4 5 6 7
1E-3

0.01

0.1

1

S
ur
vi
va

lF
ra
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n

Dose (Gray)

Control

+GdBN
0.5mM

Figure 6 Surviving fraction as function of radiation dose of U87 cells free of GdBN (black) and in
the presence of GdBN (red) irradiated by gamma rays (60Co).



Table 2 Coefficients α and β calculated for U87 cells irradiated by gamma rays

α (Gy−1) β (Gy−2)

Control 0.4 ± 0.1 0.03 ± 0.02

GdBN 0.71 ± 0.03 0
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where D is the irradiation dose. The coefficient α corresponds to the contribution of

lesions, which are directly lethal for the cell and β is attributed to the contribution of

additive sub-lethal lesions. The values of α and β determined by a fitting procedure are

reported in Table 2.

This analysis shows that the presence of GdBN induces an increase of directly lethal

lesions (α) and a decrease of sub-lethal lesions (β). The enhancement of directly lethal

lesions is attributed to the amplification of complex molecular damage as shown else-

where [23].

The efficiency of GdBN to amplify radiation-induced cell death was characterised by

calculating the enhancing factor (EF) at 2 Gy:

EF ¼
SF2Gy

control − SF2Gy
GdBN

� �

SF2Gy
control

ð2Þ

The survival fractions at 2 Gy of U87 cells free of NPs (SFcontrol
2Gy ) and loaded with

GdBN (SFGdBn
2Gy ) are 0.31 and 0.24, respectively. The enhancing factor is close to 23%,

which characterises the GdBN efficiency when 1.25 MeV gamma rays are used as ionis-

ing radiation (see Table 3). These results are complementary to the other studies per-

formed with GdBN and summarised in reference [58].

Conclusions
The main objective of this work was to probe the efficacy of NPs to amplify radiation

effects as a function of their localisation in the cells. We found that GdBN efficiently

amplify gamma rays-induced cell killing of U87 cells (by 23%) even though NPs are lo-

cated and activated in lysosomes but not in mitochondria. It is the first evidence that

the radiosensitisation by NPs may be due to strong perturbations in lysosomes.

This work required the optimisation of an experimental protocol based on the com-

bination of three techniques with the aim to determine unambiguously the localisation

of label-free NPs. The synchrotron radiation deep-UV (SR-DUV) microscopy was pro-

posed as a new tool to observe the uptake of label-free NPs that do not absorb in the

visible energy range. This elegant technique offers new perspectives in cell microscopy.

Conventional TEM was used to determine the uptake mechanism of GdBN. Finally,

confocal microscopy was used to investigate the co-localisation of NPs with cell organ-

elles with no artefact of the Cyanine dye in this case. With this set of methods, we

demonstrated that GdBN are taken up by U87 cells via endocytosis and start to popu-

late lysosomes 5 hours after incubation but never reach the mitochondria. Thus we
Table 3 Surviving fraction (SF) and enhancing factor (EF) calculated for U87 cells
irradiated by gamma rays

SF2 Gy EF

Control 0.31

GdBN 0.24 22.6%
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demonstrated that the amplification of radiation effects by GdBN in U87 cells is related

to perturbations induced in the cell lysosomes but not in the respiratory chain system

(in the mitochondria). This study is a first step in the understanding of the biological

action of GdBN in U87 cells; additional experiments are needed to identify the metabolic

functions that are affected by the presence and the activation of NPs in lysosomes.

Finally, the study demonstrates that a combination of experimental protocols—TEM,

SR-DUV and confocal microscopy—may be used as a standard method to characterise

the action of NPs in different cell lines.
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